LIMRO .,

MODERN RADIATION ONCOLOGY

Al planning approaches

Head and Neck

Nuria Jornet
Medical Physics Department
Hospital de la Santa Creu i Sant Pau
Barcelona




Learning objectives

Understand how human intervention and Al can be used in the RT treatment planning process
Discuss what are the specific challenges for head and neck treatment planning

Discuss on the limitations of Al in head and neck planning

Future directions




Artificial Intelligence = The use of a computer to perform tasks that typically require human thought

Scripting (automate repetitive tasks, need instructions)
Machine Learning (yield output from a given input without specific instructions)

- Supervised learning (model generated to give specific output)
- Unsupervised learning (model determines its own output from underlying data)

Deep learning

- Artificial neural network to simulate human reasoning




Challenges in head and neck treatment planning

Increasing demand (SIB + IMRT/VMAT standard of care)
- Need to optimize workflow
Anatomical changes during treatment delivery

- Tumour response
- Weight lose

Dose distribution robustness to patient position (shoulders/chin)

Quality Assurance (Plan evaluation)
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Automation and human intervention in the treatment planning process
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Automation and human intervention in the treatment planning process

ADAPTIVE Improving image quality (optimization)
Synthetic kV-CT from MR and CBCT
Synthetic MV-CT from MR, kVCT and CBCT
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Improving calculation accuracy with a better characterisation of tissues
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Improved accuracy of relative electron density and proton stopping
power ratio through CycleGAN machine learning
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kKVCT Acquisition

Machine
learning model

CycleGAN

Contouring & localization

sMVCT

Dose calculation




Table 2. Results of g and SPR values calculated using the kV and MVCT calibration curves for skin, muscle, adipose, and spongiosa tissue

mimicking phantoms,
Relative electron density Stopping power ratio (115 MeV')
Measured KVCT (%diff)  MVCT (% diff) Measured KVCT (%diffy  MVCT (%diff)
Skin 1.048 = 0.002 1.026 = 0.004 1.051 = 0.004 1.049 = 0.002 1.055 = 0.004 1.052 = 0.004
(—2.10) (0.29) (0.62) (0.29)
Muscle 1.036 = 0,002 1.009 =+ 0,004 1.038 = 0,004 1.036 = 0.002 1.038 = 0,004 1.037 = 0,004
(—=2.61) (0.19) (0.13) (0.11)
J’Ld_'i|_'rl}:-if 0.955 £+ 0.002 0.947 =+ 0.004 0.963 £+ 0.005 0.953 = 0.002 0.978 £+ 0.004 0.970 £+ 0.005
(—0.84) (0.84) (2.58) (1.70)
Spongiosa 1.044 = 0.002 1.067 = 0.002 1.042 = 0.003 1.044 = 0,002 1.090 = 0.002 1.042 = 0.003
(2.20) (—0.19) (4.38) (—0.22)




Relative electron density

Measured kVCT (% diff) MVCT (% diff) sMVCT (% diff)
1.120 1.204 = 0.10(7.50%) 1.129 &= 0.13(0.80%) 1.131 &= 0.20(0.98%)
Stopping power rato (115 MeV)
Measured kVCT (% diff) MVCT (% diff) sMVCT (% diff)
1.125 1.207 = 0.09(7.48%) 1.129 = 0.11(0.78%) L.131 = 0.17(0.96%)




Automation and human intervention in the treatment planning process

OR segmentation ideal task for automation (repetitive nature and common geometric properties)
Manual segmentation lengthy, tedious and prone to errors

GTV/CTV more difficult due to the abnormal nature of the anatomy
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Automation and human intervention in the treatment planning process

® Deep learning in Autosegmentation of radiotherapy
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Category Name Developer Site and method
Research applications SPM Wellcome Centre for Brain
Non-machine-learning techniques Neuroimaging, University Shape models
College London, UK
FSL FMRIB Analysis Group, Brain
Oxford University, UK Shape models
Freesurfer Harvard University, USA Brain

Research Applications
Machine-learning techniques

Commercial applications
Non-machine-learning techniques

Commercial applications
Machine-learning techniques

Intensity-based

InnerEye Open Source Microsoft Research, USA Multiple sites
Deep Learning Toolkit CNN
Eclipse Varian, USA Multiple sites
Atlas-based
ABAS Elekta AB, Sweden Multiple sites
Atlas-based
Prosoma Medcom GMBH, Germany Multiple sites
Atlas-based & shape models
OnQ RTS Oncology Systems Ltd, UK Multiple sites
Atlas-based
RayStation Raysearch AB, Sweden Multiple sites
Atlas-based
SPICE (Pinnacle) Philips NV, Netherlands Multiple sites
Atlas-based
MIM Maestro Mim Software Inc, USA Multiple sites
Atlas-based
[Plan Elements BrainLab Ag, Germany Brain
Atlas-based
Precision Accuray Inc, USA Multiple sites
Atlas-based
DLC Expert Mirada Medical, UK Multiple sites
CNN
Muvision Mvision Al, Finland Multiple sites
CNN
Limbus.ai Limbus.ai Inc, Canada Multiples sites
CNN
ART-Plan Therapanacea, Paris Multiple sites

CNN

Atlas based: Deformable
registration to warp contours
from a similar atlas patient to
the current patient

Al (CNN): Models trained on
CT datasets, ground truth
expert contours or consensus
contours from public datasets

CNN-based OAR contours
require less correction than
atlas based contours

9% vs 30%



Times needed for Deep Learning-segmentation

DL-segmentation of all OARs:

* 30 s male pelvis
e 120 s head and neck
e 70s for abdomen

Reductions of DL+manual editing compared to manual
contouring from scratch:

 88% male pelvis
e 80% head and neck
* 65% abdomen

times for visual inspection of DL-contours
and manual editing (if needed):

* 5 min male pelvis
e 15 min head and neck
e 30 min abdomen




We present a novel method to identify errors in

3D organ-atpsk segmentations in radiotherapy
CL without a ground truth
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MANCHESTER
1824

The University of Manchester

What did they do?

* Developed a tool to identify errors in 3D OAR
segmentations

* Did so without a known ground truth

* Previous methods predicted global errors (DSC,
clinical acceptability, distance metric)

* |dentified errors in local areas

* Independent of the contour generation method .
Does this contour

need editing and
where?
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The University of Manchester

Conclusion

* The proposed method provides automatic segmentation quality assurance to improve
contouring consistency for patients treated with radiotherapy

* Many applications for such a method:
* As a second check for auto-segmentation software
* Improving the efficiency of clinical segmentation auditing
* Flag important regions for clinicians to check

NHS

The Christie

NHS Foundation Trust



Factors limiting auto-segmentation

* Lack of standardization of contouring protocols

* Lack of robustness to small changes in data acquisition

* Lack of trust amongst intended users

* Lack of solid ground truth: what are the true borders of (some) OARs and tumors in the images?

Has impact on training, clinical validation and interpretation of studies

* |f there is a difference between expert- and DL contours, who is right?




Future of auto-segmentation

 Make better use of unlabelled datasets in optimising deep-learning models.

* Implement consistent labelling of real-world data by standardising nomenclature for ROIls; for
example, following proposed guidelines

* Develop tools that simplify the optimisation of machine-learning algorithms

* Use of heterogeneous datasets (male/female, scanners, acquisition models, etc) reduce overfitting.




Automation and human intervention in the treatment planning process
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Automation and human intervention in the treatment planning process
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Prescription decision support tools

January 10, 2022 - Case Western Reserve University researchers are using artificial intelligence
to identify which patients with certain head and neck cancers would benefit from reducing the
intensity of treatments, including radiation therapy and chemotherapy.

Using Al tools like those they developed over the last decade, researchers asked the computer

to analyze digital images of tissue samples taken from 438 patients with a type of head and
neck cancer, known as HPV-associated oropharyngeal squamous cell carcinoma (OPCSCC) from
six hospital systems.

The computer program successfully detected a subset of patients who could benefit from a
significantly reduced dose of radiation therapy. According to the research team, their next step is
to test the AI method’s accuracy in clinical trials.

This latest research builds on previous research by the CCIPD in developing novel imaging
biomarkers for risk stratification and outcome prediction of head and neck cancer.




Automation and human intervention in the treatment planning process

Challenges

Complex anatomy

Different dose levels (control hot spots outside the PTVs)

Tolerances for OAR (patient specific considerations, priorities)
Robustness and complexity
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Automation and human intervention in the treatment planning process

Automated treatment planning

Knowledge based planning systems (Using previous patients to predict the dose distribution in new patient)
Machine learning for dose prediction
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Automation and human intervention in the treatment planning process

IMRT dose prediction: A priory knowledge of the volumetric dose of a prospective patients

Atlas based:

Extracted

Similar patient
+ Dose distribution

— Novel Dose - IMRT radiotherapy plan
Prediction

New patient

Still needs inverse optimization step to translate the predicted DVH/dose to
deliverable fluence maps, which correspond to machine parameters
(MLC/gantry speed/ dose rate)
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Fogliata et al. Radiation Oncology (2017) 12:73

Rapid Plan and head and neck treatments DOI 10.1186/513014-017-0808 Radiation Oncology

RapidPlan head and neck model: the ® e
a % RP_OR_2P_33 - CP objectives and possible clinical benefit
0
o 4 A Fogliata”, G. Reggiori', A. Stravato', F. Lobefalo', C. Franzese', D. Franceschini', S. Tomatis', P. Mancosu’,
60 2 ] M. Scorsetti"? and L. Cozzi'?
40 0 = ™
0 | > T U0
0 — , 4 . .
30 = %l 1 - LF 6 Doses were prescribed for all patients
-40 % H lj L[J 8 in 33 fractions, to total doses of 69.96 Gy and 54.45 Gy
-10 . .
-60 ] [ to the boost and the elective PTV, respectively
-80 14
= % 5§ § 5§ 8§ 8 EE | . . .
5 6 E E E E E E E S S o W R P Model trained with plans with 2-4 arcs
B ES D 2 5 2 % B8 2 8§ 2 8 8 - -
S & Z 8832 8 5 5K A S & g A Validated with 2 arcs
T 88§ ™22 FE § 8 5 2
segf " FFii R .
=0 S £E § 3 £ > g' fe. Model stability for beam geometry and
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Automation and human intervention in the treatment planning process

Predict the fluence map without inverse planning

Model | Model Il Model Il

3D Dense-U-NET 3D Dense-U-NET 2D Dense-U-NET
Training-patchsize ~ Training-patch size  Training-patch size
(128+128+48) (128+128+16) (256+256)

Fully connected neural networks

I 4Gy

Convolutional neural networks

Prostate: Lee et al. Sci Rep (2019)

Breast: Sheng et al. Front Oncol (2019)
Pancreas: Wang et al. Advances in Radiat Oncol(2021)
Nasopharynx: Liu et al. Front. Oncol. (2021)

v

Limited precision in predicting accurate doses in no-contoured areas
The deep-learning model needs to know the spatial relationship between OARs and PTV.
Accuracy highly dependent on the technique, equipment...
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Automation and human intervention in the treatment planning process

Treatment decision supporting tool: Protons vs X-ray

Method 1 - - S S— -

Method 2 ' |- —ig— c g -

Method 3 —{T - —— —

Method 4 * I ! —a— ¢ i

Method 5 « i - T — -
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Method 1 . . - . PR E———

Method 2 ..+ . . - . . --——-—.... .

Method 3 4. a— - . =5 ! . pe—

Method 4 - —a—- I “ o =

Method § ' 2 =) BETI - 38 =] - ot ———

201510 5 0 5 10 15 20 -20-15-10 5 0 5 10 15 20 -20 1510 5 0 5 10 15 20
PCM Inferior Cricopharyngeus Average

Tambas et al. Cancers 2022

WORKFLOW OPTIMISATION

Linear regression models for individual
OARs were created to predict the Dy ean
to the OARs for VMAT and IMPT plans.

Positive = IMPT potential overestimated.
Smaller width box: smaller difference

between predicted and actual IMPT dose




ART: Replanning

Geometrical and anatomical variations occur during the course of curative intent treatments for HNC

77% of patients the 4t week undergo significant morphological and dosimetric changes (Guidi et al,2015)
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ART Replanning: Prediction models (WHEN)

1. Not all dose distributions are equal regarding robustness to anatomical variations.

2. Confounding factor: Suboptimal immobilisation, shoulders’ position differed significantly to that seen on their planning CT.

=j"‘jgrs 2022 by Radiomics on CBCT to predict which patients
will have significant anatomical variations

Article

Early Prediction of Planning Adaptation Requirement
Indication Due to Volumetric Alterations in Head and Neck
Cancer Radiotherapy: A Machine Learning Approach

Vasiliki Iliadou *®), Ioannis Kakkos 1'2(2, Pantelis Karaiskos 3, Vassilis Kouloulias 4©®, Kalliopi Platoni 1@,
Anna Zygogianni ° and George K. Matsopoulos !
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ART Replanning: Prediction models (WHEN)

2. Confounding factor: Suboptimal immobilisation, shoulders’ position differed significantly to that seen on their planning CT.

Retrospective Clinical Evaluation
of a Decision-Support Software
for Adaptive Radiotherapy of Head
and Neck Cancer Patients

Sebastien A. A. Gros'”, Anand P. Santhanam?, Alec M. Block’, Bahman Emami’,
Brian H. Lee and Cara Joyce®

Deformation of planned dose distribution on the daily CBCT

Prediction algorithm that analysed dosimetric parameter (DP) trends
against user-specified thresholds to proactively
trigger adaptive re-planning up to four fractions ahead

Fr(?nt. Oncol. 12:7 77793. WORKFLOW OPTIMISATION
doi: 10.3389/fonc.2022.777793

ADAPTIVE ROBUSTNESS




Automation and human intervention in the treatment planning process

Including:

Evaluation of the treatment plan quality (dose distribution, robustness, complexity)

Are dose calculations accurate (redundant dose calculation)
Can the plan be delivered as planned (pre-treatment verification and in vivo dosimetry)

Dose

. Plan evaluation
calculation
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Automation in pre-treatment verifications

Reduce the number of plans that need to be verified.

Advantages

Drawbacks

References

Machine
Learning

* Multivariate
regression models

* Tree-based
algorithms

* Interpretability

* |dentifies the
critical
parameters

 Portability

 Selection training data

* It is very difficult for a single
institution to collect
adequate amounts of low

GPR plans for model training.

Overfitting risk
 Selection training data

Valdes G et al. Med Phys.
(2016)

Valdes et al. J Appl Clin Med
Phys.(2017) Lam D. et al. Med
Phys (2019)

Wang LiJ et al Int. J. Radiat.
Oncol. Biol. Phys. (2019)
Granville DA. et al. Phys.
Med. Biol. (2019)



Automation in pre-treatment verifications

Analysis of results

Advantages Drawbacks References

Deep * CNN * It does not require  Selection training data Interian Y et al. Med Phys.
Learning * ANN additional domain * It is very difficult for a single (2018)
knowledge institution to collect adequate =~ Tomori S. et al Med Phys
* Overcome Gamma amounts of low GPR plans for (2018)
analysis model training. Overfitting risk ~ Mahdavi S. et al Br. J. Radiol.
* Interpretability (2019) Kimura Y. et al. Phys.
 Selection training data Medica (2020)

Nyflot M.J. et al Med. Phys
(2019)



Portability

No Fail No Fail

1
0.20)

true label
true label
(=]
w

r0.4

. 04
Fail | o3 Fail 1 (0.29) 0

ro2 0.3

<&

predicted label predicted label

5% false negatives 29% false negatives

Model applied to another
institution data set,

same equipment,

same QA criteria (gamma)

Claessens et al. submitted for publication



To keep in mind

“The models presented in this study may not be valid for use in other centres, as both regression
coefficients of the parameters in the models as well as the level of rescaling is expected to differ from

center to center

Also within institutions, or specific subgroups of patients, inter-patient variance could be larger and
the performance and applicability of any model could be reduced. Therefore, it is essential to assess
the model parameters and rescaling factors, by validating, and if necessary revising or updating our
models with own institute-specific patient data.

Moreover, as radiation technologies and center performance evolve over time, regular updating of
the model and rescaling factors is paramount within each centre”

QA: Regular assessment of models




Final thoughts

1. Alis atool

2. Alis not the solution to all head and neck planning challenges

°Nn Al as a decision support tool
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Eliana Vazquez-Osorio
Ben Heijmen
Pedro Gallego




